Precursor of brain-derived neurotrophic factor (proBDNF) forms a complex with Huntingtin-associated protein-1 (HAP1) and sortilin that modulates proBDNF trafficking, degradation, and processing.
نویسندگان
چکیده
proBDNF, a precursor of brain-derived neurotrophic factor (BDNF), is anterogradely transported and released from nerve terminals, but the mechanism underlying this process remains unclear. In this study, we report that proBDNF forms a complex with Huntingtin associated protein-1 (HAP1) and sortilin, which plays an important role in proBDNF intracellular trafficking and stabilization. The interaction of proBDNF with both HAP1A and sortilin in co-transfected HEK293 cells is confirmed by both fluorescence resonance energy transfer and co-immunoprecipitation. The frequent co-localization (>90%) of endogenous HAP1, sortilin, and proBDNF is also found in cultured cortical neurons. Mapping studies using GST pulldown and competition assays has defined the interacting region of HAP1 with proBDNF within amino acids 371-445 and the binding sequences of proBDNF to HAP1 between amino acids 65 and 90. Fluorescence recovery after photobleaching confirms the defective movement of proBDNF-containing vesicles in neurites of HAP1(-/-) neurons, which can be partially restored by reintroducing HAP1 cDNA into the neurons. However, the effect is significantly increased by simultaneously reintroducing both HAP1 and sortilin. proBDNF and HAP1 are highly co-localized with organelle markers for the Golgi network, microtubules, molecular motor, or endosomes in normal neurons, but this co-localization is reduced in HAP1(-/-) neurons. Co-immunoprecipitation and Western blot showed that sortilin stabilizes the proBDNF·HAP1 complex in co-transfected HEK293 cells, helping to prevent proBDNF degradation. Furthermore, the complex facilitates furin cleavage to release mature BDNF.
منابع مشابه
HBpF-proBDNF: A New Tool for the Analysis of Pro-Brain Derived Neurotrophic Factor Receptor Signaling and Cell Biology
Neurotrophins activate intracellular signaling pathways necessary for neuronal survival, growth and apoptosis. The most abundant neurotrophin in the adult brain, brain-derived neurotrophic factor (BDNF), is first synthesized as a proBDNF precursor and recent studies have demonstrated that proBDNF can be secreted and that it functions as a ligand for a receptor complex containing p75NTR and sort...
متن کاملProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin.
Brain-derived neurotrophic factor (BDNF) is best characterized for critical roles in neuronal survival, differentiation, and synaptic modulation mediated by the TrkB receptor tyrosine kinase. Developmentally regulated death signaling by BDNF has also been demonstrated via activation of p75NTR. Because recent studies suggest that proNGF, the precursor form of NGF, is more active than mature NGF ...
متن کاملPro-brain-derived neurotrophic factor inhibits GABAergic neurotransmission by activating endocytosis and repression of GABAA receptors.
GABA is the canonical inhibitory neurotransmitter in the CNS. This inhibitory action is largely mediated by GABA type A receptors (GABAARs). Among the many factors controlling GABAergic transmission, brain-derived neurotrophic factor (BDNF) appears to play a major role in regulating synaptic inhibition. Recent findings have demonstrated that BDNF can be released as a precursor (proBDNF). Althou...
متن کاملProBDNF and mature BDNF as punishment and reward signals for synapse elimination at mouse neuromuscular junctions.
During development, mammalian neuromuscular junctions (NMJs) transit from multiple-innervation to single-innervation through axonal competition via unknown molecular mechanisms. Previously, using an in vitro model system, we demonstrated that the postsynaptic secretion of pro-brain-derived neurotrophic factor (proBDNF) stabilizes or eliminates presynaptic axon terminals, depending on its proteo...
متن کاملHuman immunodeficiency virus type 1 alters brain-derived neurotrophic factor processing in neurons.
The molecular mechanisms leading to synaptic simplification and neuronal apoptosis in human immunodeficiency virus type 1 (HIV-1)-positive subjects are unknown. The HIV protein gp120 reduced the length of neuronal processes similarly to the proneurotrophin pro-brain-derived neurotrophic factor (proBDNF). Intriguingly, the effects of both proBDNF and gp120 were blocked by inhibitors of the p75 n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 286 18 شماره
صفحات -
تاریخ انتشار 2011